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Abstract
Random matrix theory can be used to describe the transport properties of a
chaotic quantum dot coupled to leads. In such a description, two approaches
have been taken in the literature, considering either the Hamiltonian of the
dot or its scattering matrix as the fundamental random quantity of the theory.
In this paper, we calculate the first four moments of the distribution of the
scattering matrix of a chaotic quantum dot with a time-dependent potential,
thus establishing the foundations of a ‘random scattering matrix approach’ for
time-dependent scattering. We consider the limit that the number of channels
N coupling the quantum dot to the reservoirs is large. In this limit, the
scattering matrix distribution is almost Gaussian, with small non-Gaussian
corrections. Our results reproduce and unify results for conductance and
pumped current previously obtained in the Hamiltonian approach. We also
discuss an application to current noise.

PACS numbers: 73.23.−b, 72.10.Bg, 72.70.+m, 05.45.Mt

1. Introduction

From a statistical point of view, energy levels and wavefunctions in semiconductor quantum
dots and metal grains, or eigenfrequencies and eigenmodes of microwave cavities, share a
remarkable universality. With proper normalization, correlation functions of energy levels or
wavefunctions for an ensemble of macroscopically equivalent, but microscopically distinct
samples depend on the fundamental symmetries of the sample only; they do not depend on
sample shape or volume, or on the impurity concentration. The same universality appears
for correlators of eigenvalues and eigenfunctions of large matrices with randomly chosen
elements [1–3]. Originally, such ‘random matrices’ were introduced by Wigner and Dyson
to describe the universal features of spectral correlations in heavy nuclei [4, 5]. Theoretical
predictions from random matrix theory have been verified in experiments on semiconductor
quantum dots and chaotic microwave cavities,and with the help of numerical simulations [6–9];
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for the case of a disordered quantum dot, the validity of random matrix theory has been proved
by field-theoretic methods [10].

Open samples, such as semiconductor quantum dots coupled to source and drain reservoirs
by means of ballistic point contacts or microwave cavities coupled to ideal waveguides, do
not have well-resolved energy levels or wavefunctions. They are characterized by means
of a continuous density of states and by their transport properties, such as conductance or
shot noise power. Within random matrix theory, two approaches have been taken to describe
open samples [11]. In both approaches, transport properties are described in terms of the
sample’s scattering matrix S. The first approach is the ‘random Hamiltonian approach’. In
this approach, the scattering matrix is expressed in terms of a random Hermitian matrix H,
which represents the Hamiltonian of the closed sample. Averages or fluctuations of transport
properties are then calculated in terms of the known statistical distribution of the random
matrix H [12, 13]. In the second approach, the ‘random scattering matrix approach’, the
scattering matrix S itself is considered the fundamental random quantity. It is taken from
Dyson’s ‘circular ensemble’ of uniformly distributed random unitary matrices [14–18], or a
generalization known as the ‘Poisson kernel’ [2, 19, 20]. Both approaches were shown to be
equivalent [13, 20]. Hence, which method to use is a matter of choice.

Recently, there has been interest in transport through chaotic quantum dots with a time-
dependent Hamiltonian. Switkes et al fabricated a ‘quantum electron pump’ consisting of
a chaotic quantum dot whose shape could be changed by two independent parameters [21].
Periodic variation of the shape then causes current flow through the quantum dot, hence the
name ‘electron pump’. Motivated by theoretical predictions of Vavilov and Aleiner [22, 23],
Huibers et al looked at the effect of microwave radiation on the quantum interference
corrections to the conductance of a quantum dot [24]. The presence of a time-dependent
potential will cause the ratio of universal conductance fluctuations with and without time-
reversal symmetry to be less than 2 if the typical frequency of the fluctuations is of the order
of the electron escape rate from the quantum dot [23, 25–27]. (By the Dyson–Mehta theorem
[28], the ratio is 2 in the absence of a time-dependent perturbation [11].)

A scattering matrix formalism to describe time-dependent transport was developed by
Büttiker and co-workers [29–33]. The scattering matrix formalism for time-dependent
scattering is more complicated than the formalism for time-independent scattering, since
energy is no longer conserved upon scattering from a cavity or quantum dot with a time-
dependent potential. In the adiabatic limit, when the frequency ω of the time-dependent
variations is small compared to the escape rate from the quantum dot, the theory can be
formulated in terms of the scattering matrix S and its derivative to energy [32]. However, a
theory that describes arbitrary frequencies ω must be formulated in terms of a scattering matrix
S(ε, ε′) that depends on two energy arguments, or, equivalently, a matrix S(t, t ′) depending
on two time arguments [22].

Random matrix theory can be used to describe the statistics of time-dependent transport
if the time dependence is slow on the scale of the time τerg needed for ergodic exploration
of the quantum dot. In several recent papers [22, 23, 25–27, 34, 35] the calculation of time-
dependent transport properties for an ensemble of chaotic quantum dots was done using a
variation of the ‘random Hamiltonian approach’: the time-dependent scattering matrix S(t, t ′)
is first expressed in terms of a time-dependent Hermitian matrix H(t), which is the sum
of a time-independent random matrix and a time-dependent matrix which does not need to
be random; the ensemble average is then calculated by integrating H over the appropriate
distribution of random matrices. It is the purpose of this paper to develop a ‘random scattering
matrix approach’ for time-dependent scattering, using the distribution of the scattering matrix
S(t, t ′), not the Hamiltonian H(t), as the starting point for further calculations.
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For time-independent scattering, the distribution of the elements of the scattering matrix
is given by the circular ensembles from random matrix theory (or, for a quantum dot with
nonideal leads, by the Poisson kernel). In the limit that the dimension N of the scattering matrix
becomes large, the scattering matrix distribution can be well approximated by a Gaussian,
whereas non-Gaussian correlations can be accounted for in a systematic expansion in 1/N

[36]. For the calculation of transport properties (conductance, shot noise power), the Gaussian
approximation is usually sufficient; knowledge of the underlying ‘full’ scattering matrix
distribution is not required. Here, we take a similar approach for time-dependent transport.
We show that, for large N, elements of the scattering matrix S(t, t ′) are almost Gaussian
random numbers, for which non-Gaussian correlations can be taken into account by means of
a systematic expansion in 1/N . We calculate the second moment of the distribution and the
leading non-Gaussian correction.

This paper is organized as follows: in section 2 we review the scattering matrix approach
for time-independent scattering. The case of time-dependent scattering is considered in
section 3. Applications are discussed in section 4. Details of the calculation and an extension
to the case of quantum dots with nonideal contacts can be found in the appendices. The second
moment of the scattering matrix distribution calculated here was used in [37] to compute the
shot noise power of a quantum electron pump.

2. Time-independent scattering

We first summarize important facts about the distribution of the scattering matrix S for time-
independent scattering.

For large matrix size N, the scattering matrix elements Sij have a Gaussian distribution
with small non-Gaussian correlations. Mathematically, this is a consequence of the fact that S
is distributed according to the circular ensemble from random matrix theory or, for a quantum
dot with nonideal leads, the Poisson kernel [36]. In a semiclassical picture, the Gaussian
distribution of the scattering matrix elements follows from the central limit theorem, when Sij

is written as a sum over many paths, where the contribution of each path contains a random
phase factor [14–16, 38, 39]. The small non-Gaussian corrections follow because the full
scattering matrix satisfies the constraint of unitarity, which is not imposed in the semiclassical
formulation1.

The Gaussian part of the distribution is characterized by the first two moments. In this
paper, we focus on the case of a quantum dot coupled to the outside world via ideal leads. In
this case, the first moment vanishes,

〈Sij 〉 = 0. (1)

The case of nonideal leads, for which 〈Sij 〉 �= 0, is discussed in appendix A. The second
moment of the scattering matrix distribution depends on the presence or absence of time-
reversal symmetry (TRS),

W
ij;kl
1 = 〈SijS∗

kl〉 = 1

N
×

{
(δikδjl + δilδjk) with TRS
δikδjl without TRS

(2)

up to corrections of relative order 1/N in the presence of time-reversal symmetry. All averages
involving unequal powers of S and S∗ vanish. Equation (2) is for spinless particles or for

1 Averages or correlation functions of certain transport properties which, at first sight, would require knowledge of
the fourth moment of the scattering matrix distribution, can be formulated in terms of the second moment only, using
unitarity of the scattering matrix. This way, the average and fluctuations of the conductance of a chaotic quantum dot
have been calculated using the semiclassical approach, see, e.g., [40, 41].
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electrons with spin in the absence of spin–orbit coupling. (In the latter case, the scattering
matrix has dimension 2N and is of the form S ⊗ 12, where 12 is the 2 × 2 unit matrix in spin
space and the N × N matrix S describes scattering between orbital scattering channels.) We
do not consider the case of broken spin-rotation symmetry, when S is a random matrix of
quaternions [1].

Non-Gaussian correlations of scattering matrices are of relative order 1/N or less. The
leading non-Gaussian correlations are described by the cumulant [36, 42, 43]

W
i1j1,i2j2;k1l1,k2l2
2 = 〈

Si1j1Si2j2S∗
k1l1

S∗
k2l2

〉 − 〈
Si1j1S∗

k1l1

〉〈
Si2j2S∗

k2l2

〉 − 〈
Si1j1S∗

k2 l2

〉〈
Si2j2S∗

k1 l1

〉
. (3)

In the absence of time-reversal symmetry and for N � 1, the cumulant W2 is given by

W2 = − 1

N3

(
δi1k1δj1l2δi2k2δj2l1 + δi1k2δj1l1δi2k1δj2l2

)
. (4)

In the presence of time-reversal symmetry, W2 is found by the addition of 14 more terms to
equation (4), corresponding to the permutations i2 ↔ j2, k1 ↔ l1 and k2 ↔ l2,

W2 = − 1

N3

(
δi1k1δj1l2δi2k2δj2l1 + δi1k2δj1l1δi2k1δj2l2 + δi1k1δj1l2δj2k2δi2l1 + δi1k2δj1l1δj2k1δi2l2

+ δi1l1δj1l2δi2k2δj2k1 + δi1k2δj1k1δi2l1δj2l2 + δi1l1δj1l2δj2k2δi2k1

+ δi1k2δj1k1δj2l1δi2l2 + δi1k1δj1k2δi2l2δj2l1 + δi1l2δj1l1δi2k1δj2k2

+ δi1k1δj1k2δj2l2δi2l1 + δi1l2δj1l1δj2k1δi2k2 + δi1l1δj1k2δi2l2δj2k1

+ δi1l2δj1k1δi2l1δj2k2 + δi1l1δj1k2δj2l2δi2k1 + δi1l2δj1k1δj2l1δi2k2

)
. (5)

We refer to [36] for higher-order cumulants and finite-N corrections to W1 and W2.
Although equations (2) and (3) do not specify the full scattering matrix distribution—

for that one would need to know all cumulants—they are sufficient to calculate the average
and variance of most transport properties. As an example, we consider a quantum dot
connected to source and drain reservoirs by means of two ballistic point contacts with N1

and N2 propagating channels per spin direction at the Fermi level, with N = N1 + N2. The
zero-temperature conductance is given by the Landauer formula, which we write as [40]

G = 2e2

h

(
N1N2

N
− trS�S†�

)
(6)

where S is the N × N scattering matrix and � is an N × N diagonal matrix with

�ij = δij

N
×

{
N2 if 1 � i � N1

−N1 if N1 < i � N.
(7)

For large N, the second term in equation (6) is a small and fluctuating quantum correction to
the classical conductance of the quantum dot. Using equations (2) and (4), the average and
variance of the conductance for N � 1 then follow as

〈G〉 = 2e2

h

(
N1N2

N
− δβ,1

N1N2

N2

)
(8)

var G = 4e4

h2

(
N2

1 N2
2

N4

)
(1 + δβ,1) (9)

where the symmetry parameter β = 1 or 2 with or without time-reversal symmetry,
respectively.

In the derivation of equations (8) and (9) it is important that the matrix � is traceless.
This ensures that the non-Gaussian cumulant (4) does not contribute to var G, despite the
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fact that calculation of var G involves an average over a product of four scattering matrices.
Similarly, the O(N−2) corrections to the second moment W1 of equation (2) in the presence
of time-reversal symmetry do not contribute to the average conductance to order N0.

So far we have only considered elements of the scattering matrix at one value of the Fermi
energy ε (and of the magnetic field, etc). If one wants to calculate averages involving scattering
matrices at different energies, one needs to know the joint distribution of the scattering matrix
S(ε) at different values of ε. To date, no full solution to this problem is known for N > 1.
However, for large N, the joint distribution of scattering matrix elements Sij at different values
of the Fermi energy or other parameters continues to be well approximated by a Gaussian,
while unitarity causes non-Gaussian corrections that are small as 1/N . As before, the Gaussian
part of the distribution is specified by its first and second moment. The first moment is zero
for a quantum dot with ideal leads; the second moment reads2

W
ij;kl
1 (ε; ε′) = 〈Sij (ε)Skl(ε

′)∗〉
= 1

N − i(ε − ε′)
×

{
(δikδjl + δilδjk) with TRS
δikδjl without TRS.

(10)

Here, and below, we measure energy in units of �/2π , where � is the mean spacing between
the spin-degenerate energy levels in the quantum dot without the leads. Equation (10)
was originally derived using semiclassical methods [14–16, 38, 39] and in the Hamiltonian
approach of random matrix theory [12, 44, 45]. A derivation using the random scattering
matrix approach is given in [46] and in appendix B. In the absence of time-reversal symmetry,
the leading non-Gaussian correlations are described by the cumulant

W
i1j1,i2j2;k1l1,k2l2
2 (ε1, ε2; ε′

1, ε
′
2) = 〈

Si1j1
(ε1)Si2j2

(ε2)S
∗
k1l1

(ε′
1)S

∗
k2l2

(ε′
2)

〉
− 〈

Si1j1
(ε1)S

∗
k1l1

(ε′
1)

〉〈
Si2j2

(ε2)S
∗
k2l2

(ε′
2)

〉
− 〈

Si1j1
(ε1)S

∗
k2l2

(ε′
2)

〉〈
Si2j2

(ε2)S
∗
k1l1

(ε′
1)

〉
= −

(
δi1k1δj1l2δi2k2δj2l1 + δi1k2δj1l1δi2k1δj2l2

)
(N − i(ε1 + ε2 − ε′

1 − ε′
2))

(N − i(ε1 − ε′
1))(N − i(ε1 − ε′

2))(N − i(ε2 − ε′
1))(N − i(ε2 − ε′

2))
. (11)

In the presence of time-reversal symmetry, 14 terms corresponding to the permutations
i2 ↔ j2, k1 ↔ l1 and k2 ↔ l2 have to be added to equation (11), respectively, as in equation (5)
for the energy-independent case. A derivation of equation (11) is given in appendix B.

Equations (10) and (11) can be used to calculate averages and correlation functions for
transport properties that involve scattering matrices at different energies. As an example, using
equation (10) for the second moment of the scattering matrix distribution, the conductance
autocorrelation function is found as [44, 45]

〈G(ε1)G(ε2)〉 − 〈G(ε1)〉〈G(ε2)〉 = 4e2N2
1 N2

2

h2N2

(1 + δβ,1)

N2 + (ε1 − ε2)2
. (12)

3. Time-dependent scattering

For time-dependent scattering, the energies of incoming and scattered particles do not need to
be equal. In order to describe scattering from a time-dependent scatterer, we use a scattering
matrix S(t, t ′) with two time arguments. (We prefer to use the formulation with two time
arguments instead of a formulation in which S has two energy arguments, since the former
allows us to describe an arbitrary time dependence of the perturbations.) For a quantum dot

2 For the second moment, an exact solution was obtained using the supersymmetry approach, see [12].
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coupled to leads with, in total, N scattering channels, the two-time scattering matrix S(t, t ′)
relates the annihilation operators ai(t) and bi(t) of incoming states and outgoing states in
channel i = 1, . . . , N ,

bi(t) =
N∑

j=1

∫ +∞

−∞
Sij (t, t

′)aj (t
′) dt ′ b†

i (t) =
N∑

j=1

∫ +∞

−∞
a†

j (t
′)(S†(t ′, t))ji dt ′. (13)

Causality imposes that

S(t, t ′) = 0 if t < t ′. (14)

Unitarity is ensured by the condition

N∑
j=1

∫
dt (S†(t ′′, t))ijSjk(t, t

′) = δ(t ′′ − t ′)δik

N∑
j=1

∫
dt Sij (t

′′, t)(S†(t, t ′))jk = δ(t ′′ − t ′)δik

(15)

where the Hermitian conjugate scattering matrix S†(t ′, t) is defined as

(S†(t ′, t))ij = S∗
ji (t, t

′). (16)

For a quantum dot without time-independent potential, the scattering matrix S0(t, t ′)
depends on the difference t − t ′ only. (In this section, we use a superscript ‘0’ to indicate that
S0 is a scattering matrix for time-independent scattering.) It is related to the scattering matrix
in energy representation by Fourier transform,

S0(t, t ′) = 1

2πh̄

∫ ∞

−∞
dε S0(ε) eiε(t−t ′)/h̄. (17)

Borrowing results from the previous section, we infer that the elements of S0(t, t ′) have a
distribution that is almost Gaussian—the Fourier transform of a Gaussian is a Gaussian as
well—but with non-Gaussian correlations that are small as N → ∞. Fourier transforming
equation (10), we obtain the variance of the distribution [47]〈
S0

ij (t, t
′)S0∗

kl (s, s′)
〉 = δ(t − t ′ − s + s′)θ(t − t ′)D0(t − t ′)

×
{
(δikδjl + δilδjk) with TRS
δikδjl without TRS.

(18)

Here, time is measured in units of 2πh̄/� and the function D0 is given by

D0(τ ) = e−Nτ . (19)

Fourier transform of equation (11) gives the leading non-Gaussian contribution,

W
0;i1j1,i2j2;k1l2,k2l2
2 (t1, t

′
1; t2, t

′
2; s1, s

′
1; s2, s

′
2) = 〈

S0
i1j1

(t1, t
′
1)S0

i2j2
(t2, t

′
2)S0∗

k1l1
(s1, s

′
1)S0∗

k2l2
(s2, s

′
2)

〉
− 〈

S0
i1j1

(t1, t
′
1)S0∗

k1l1
(s1, s

′
1)

〉〈
S0

i2j2
(t2, t

′
2)S0∗

k2l2
(s2, s

′
2)

〉
− 〈

S0
i1j1

(t1, t
′
1)S0∗

k2l2
(s2, s

′
2)

〉〈
S0

i2j2
(t2, t

′
2)S0∗

k1l1
(s1, s

′
1)

〉
= (

δi1k1δj1l2δi2k2δj2l1 + δi1k2δj1l1δi2k1δj2l2

)
F 0(t1 − t ′1; t2 − t ′2; s1 − s ′

1; s2 − s ′
2)

× δ(t1 − t ′1 + t2 − t ′2 − s1 + s′
1 − s2 + s′

2)θ(t1 − t ′1)θ(t2 − t ′2)θ(s1 − s′
1) (20)

with

F 0(τ1; τ2; τ3; τ4) = [N min(τ1, τ2, τ3, τ4) − 1] e−N(τ1+τ2). (21)
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cavity:
time-independent
scattering

time-dependent
scattering

stub:

R(t)
U(t-t’)

Figure 1. Cartoon of the picture behind equation (22): scattering from the chaotic quantum
dot with the time-dependent potential is modelled as scattering from a chaotic quantum dot with
time-independent potential and a stub with time-dependent potential.

Note that, in view of the delta function in equation (20), the function F 0 depends on three
time variables only. Despite the redundancy, we keep the four time arguments for notational
convenience. As before, in the presence of time-reversal symmetry, the expression for the
cumulant is obtained by adding terms that are obtained after interchanging i2 ↔ j2, k1 ↔ l1
and k2 ↔ l2, cf equation (5).

In order to calculate the defining cumulants W1 and W2 for the case of a chaotic quantum
dot with a time-dependent potential, we need a statistical model for the scattering matrix
distribution for time-dependent scattering. Such a model can be provided by the Hamiltonian
approach [22], or, alternatively, by extending the ‘stub model’ of [46, 48, 49] to the case of
time-dependent scattering3. In the latter approach, the N × N scattering matrix S(t, t ′) is
written in terms of an M×M random matrixU(t, t ′) (with M � N) and an (M−N)×(M−N)

random Hermitian matrix H,

S = PU(1 − RU)−1P † R = Q† e−2π iH/M�Q. (22)

Here P is an N × M matrix with Pij = δi,j and Q is an (M − N) × M matrix with
Qij = δi+N,j . The scattering matrices S(t, t ′) and U(t, t ′) depend on two time indices, and the
matrix products involving U(t, t ′) in equation (22) also imply integration over intermediate
times. The Hermitian matrix H depends on a single time argument and models both time-
independent and time-dependent perturbations to the Hamiltonian of the quantum dot. The
matrixU(t, t ′) depends on the time difference t−t ′ only and satisfies the constraint of unitarity,
equation (15). As the effect of a time-reversal symmetry breaking magnetic field will be
included in H, cf equation (26), we further require that the matrixU is time-reversal symmetric,

Uij (t − t ′) = Uji (t − t ′). (23)

The statistical distribution of the matrix U is the same as that of the scattering matrix of
a chaotic quantum dot coupled to a lead with M channels, but without magnetic field and
time-dependent potential. Hence, the first nonvanishing moments of the distribution are given
by equations (18) and (20), with S0 replaced by U and N by M.

The physical idea behind equation (22) is that the time-dependent part of the potential
is located in a ‘stub’ (a closed lead), see figure 1. The number of channels in the stub is
M − N . The matrix U is the M × M scattering matrix of the quantum dot without the stub;
the scattering matrix S is the scattering matrix of the entire system consisting of the dot
and the stub, taking into account the time-dependent scattering from the stub. The matrix
R represents the time-dependent scattering matrix for scattering from the stub. The stub is

3 The stub model is similar in spirit to the ‘quantum graph’, the spectral statistics of which is known to follow random
matrix theory [50].
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chosen to be small compared to the quantum dot, so that reflection from the stub can be
regarded instantaneous—that’s why the matrix R(t) depends on a single time argument only.
At the end of the calculation, we take the limit M → ∞. This limit ensures that the dwell time
in the dot, which is proportional to 1/N , is much larger than the time of ergodic exploration
of the dot–stub system, which is proportional to 1/M . It is only in this limit that the scattering
matrix acquires a universal distribution which is described by random matrix theory. Once the
limit M → ∞ is taken, the spatial separation of chaotic scattering (described by the M × M

scattering matrix U) and the interaction with the time-dependent potential (described by the
time-dependent reflection matrix R) no longer affect the distribution of the scattering matrix
S and the scattering matrix distribution found using the stub model becomes identical to that
with a spatially distributed time-dependent potential in the Hamiltonian approach.

A similar model has been used to describe the parametric dependence of the scattering
matrix in the scattering matrix approach [46, 48, 51]. For the parametric dependence of
S, equivalence of the ‘stub’ model and the Hamiltonian approach was shown in [49]. The
calculational advantage of the ‘stub’ model is that, for a quantum dot with ideal leads, the
vanishing of the first moment 〈Sij 〉 = 0 is manifest throughout the calculation, while it requires
fine-tuning of parameters at the end of the calculation in the Hamiltonian approach.

The matrix H in equation (22) can be written as a sum of three terms, describing three
different perturbations to the Hamiltonian of the quantum dot4

H = V (t)1 + Hshape + Hmagn. (24)

The first term in equation (24) represents an overall shift of the potential V (t) in the quantum
dot. The second term represents the effect of a variation of the shape of the quantum dot,

Hshape(t) =
n∑

j=1

xj (t)
Xj�

π
. (25)

Here the xj (j = 1, . . . , n) are n time-dependent parameters governing the shape of the
quantum dot, and the Xj are real symmetric random (M − N) × (M − N) matrices with
tr XiXj = M2δij , i, j = 1, . . . , n. Having more than one parameter to characterize the dot’s
shape is important for applications to quantum pumping [21, 52–54]. The third term in
equation (24) represents the parametric dependence of the Hamiltonian on a magnetic flux 


through the quantum dot,

Hmagn(t) = iα(t)
A�

π
√

2
(26)

where A is a random antisymmetric (M − N) × (M − N) matrix with tr ATA = M2. For a
dot with diffusive electron motion (elastic mean free path l, dot size L � l) one has

α2 = κ

(
e
(t)

hc

)2
h̄vF l

L2�
(27)

where κ is a constant of order unity and 
 the flux through the quantum dot. One has
κ = 4π/15 for a diffusive sphere of radius L and κ = π/2 for a diffusive disc of radius L [55].
4 In the Hamiltonian approach, the parameters x1(t), x2(t), V (t) and α(t) of equations (24)–(27) correspond to
time-dependent variations of the form

H(t) = S + V (t)1 +
i√
2M

α(t)A +
n∑

j=1

1√
M

xj (t)Xj

where S and Xj are real symmetric random M × M matrices, j = 1, . . . , n, A is a real antisymmetric random
M × M matrix and 1 is the M × M unit matrix. The off-diagonal elements of these random matrices are Gaussian
random numbers with zero mean and unit variance. The diagonal elements of S and Xj have twice the variance of
the off-diagonal elements.
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For ballistic electron motion with diffusive boundary scattering, the mean free path l in
equation (27) is replaced by 5L/8 and πL/4 for the cases of a sphere and a disc, respectively.
(For the ballistic case, the value of α2 reported in [55] is incorrect, see [56].) In order to
ensure the validity of the random matrix theory, the time dependence of the parameters xj and
α should be slow on the scale of the ergodic time τerg of the quantum dot.

Note that the description (22)–(27) contains the dependence on a magnetic field explicitly.
Having the full dependence on the magnetic field at our disposal, we no longer need to
distinguish between the cases of presence and absence of time-reversal symmetry.

Expanding equation (22) in powers of R, the scattering matrix S is calculated as a sum
over ‘trajectories’ that involve chaotic scattering in the quantum dot and reflections from the
stub. Since different ‘trajectories’ involve different channels in the stub at different times,
each term in the expansion carries a random phase, determined by the random phases of the
elements of U . Hence, elements Sij will have a distribution that is almost Gaussian for large
N, since they are sums over many contributions with random phases. Unitarity, imposed by
the constraint (15) for the matrix U and the form of the matrices S and R in equation (22), R
leads to corrections to the Gaussian distribution that are small as N becomes large.

The Gaussian part of the distribution of the time-dependent scattering matrix S(t, t ′) is
specified by the second moment,

W
ij;kl
1 (t, t ′; s, s′) = 〈Sij (t, t

′)S∗
kl(s, s

′)〉 (28)

whereas the leading non-Gaussian corrections are described by the cumulant

W
i1j1,i2j2;k1l1,k2l2
2 (t1, t

′
1; t2, t

′
2; s1, s

′
1; s2, s

′
2) = 〈

Si1j1(t1, t
′
1)Si2j2(t2, t

′
2)S∗

k1l1
(s1, s

′
1)S∗

k2l2
(s2, s

′
2)

〉
− 〈

Si1j1(t1, t
′
1)S∗

k1l1
(s1, s

′
1)

〉〈
Si2j2(t2, t

′
2)S∗

k2l2
(s2, s

′
2)

〉
− 〈

Si1j1(t1, t
′
1)S∗

k2l2
(s2, s

′
2)

〉〈
Si2j2(t2, t

′
2)S∗

k1l1
(s1, s

′
1)

〉
. (29)

The central result of this paper is a calculation of the cumulants W1 and W2 for time-
dependent scattering. Details of the calculation are reported in appendix C. For the second
moment W1 we find

W
ij;kl
1 (t, t ′; s, s′) = δ(t − t ′ − s + s ′)θ(t − t ′)[δikδjlD(t, t ′; s, s′) + δilδjkD(t, t ′; s′, s)] (30)

with

D(τ, σ ; τ ′, σ ′) = exp


−N |τ − σ | − 2π

�

∫ |τ−σ |

0
dξ(V (σ + ηξ) − V (σ ′ + η′ξ))

+ 2
∑

j

[xj (σ + ηξ) − xj (σ
′ + η′ξ)]2 + [ηα(σ + ηξ) − η′α(σ ′ + η′ξ)]2


 (31)

and η = sign(τ −σ), η′ = sign(τ ′ −σ ′). The first term in equation (30) is the analogue of the
diffuson from standard diagrammatic perturbation theory, while the second term corresponds
to the cooperon. For notational convenience, both terms are denoted by the same symbol
D. (Note that the order of the time arguments s and s′ is reversed in the second term of
equation (30).) The leading non-Gaussian corrections are given by the cumulant W2 for which
we find

W
i1j1,i2j2;k1l1,k2l2
2 (t1, t

′
1; t2, t

′
2; s1, s

′
1; s2, s

′
2) = θ(t1 − t ′1)θ(t2 − t ′2)θ(s1 − s′

1)θ(s2 − s ′
2)

× δi1k1δj1l2δi2k2δj2l1δ(t1 − t ′1 + t2 − t ′2 − s1 + s′
1 − s2 + s′

2)

× F(t1, t
′
1; t2, t

′
2; s1, s

′
1; s2, s

′
2) + permutations. (32)
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Figure 2. Diagrammatic representation of the contributions to the leading non-Gaussian correlator
W2 of equation (29), which involves four scattering matrices. The top left diagram has weight
F(t1, t

′
1; t2, t

′
2; s1, s

′
1; s2, s

′
2), cf equation (32). The top right diagram is obtained by interchanging

two scattering matrices and has weight F(t1, t
′
1; t2, t

′
2; s2, s

′
2; s1, s

′
1). These two diagrams give all

contributions to the cumulant W2 in the absence of time-reversal symmetry. In the presence of
time-reversal symmetry, the 14 lower diagrams, corresponding to the reversal of one or more
directions of the vertices, contribute as well.

The ‘permutations’ in equation (32) refer to one term corresponding to the permutation
(s1, s

′
1, k1, l1) ↔ (s2, s

′
2, k2, l2) of the third and fourth arguments of W2 and 14 more terms

corresponding to the interchange of incoming and outgoing channels and time arguments
within the second, third and fourth argument of W2. A diagrammatic representation of the
cumulant (33) and the relevant perturbations is shown in figure 2. The kernel F reads

F(τ1, σ1; τ2, σ2; τ ′
1, σ

′
1; τ ′

2, σ
′
2) =

∫
dξ D(σ1 + η1ξ, σ1; σ ′

1 + η′
1ξ, σ ′

1)D(τ2 − τ ′
1 + σ ′

1

+ η2ξ, σ2; τ ′
2 − τ1 + σ1 + η′

2ξ, σ ′
2)D(τ1, σ1 + η1ξ; τ ′

2, τ
′
2 − τ1 + σ1 + η′

2ξ)

×D(τ2, τ2 − τ ′
1 + σ ′

1 + η2ξ; τ ′
1, σ

′
1 + η′

1ξ)

{
N + 4

∑
m

[xm(σ1 + η1ξ)

− xm(τ ′
2 − τ1 + σ1 + η′

2ξ)][xm(σ ′
1 + η′

1ξ) − xm(τ2 − τ ′
1 + σ ′

1 + η2ξ)]

− δ(ξ − |τ1 − σ1|) − δ(ξ − |τ ′
1 − σ ′

1|) + 2[η1α(σ1 + η1ξ)

− η′
2α(τ ′

2 − τ1 − σ1 + η′
2ξ)][η′

1α(σ ′
1 + η′

1ξ) − η2α(τ2 − τ ′
1 + σ ′

1 + η2ξ)]

}
(33)

where we abbreviated η1 = sign(τ1 − σ1), η2 = sign(τ2 − σ2), η
′
1 = sign(τ ′

1 − σ ′
1) and

η′
2 = sign(τ ′

2 −σ ′
2). Note that equations (30)–(33) cover both the cases with and without time-

reversal symmetry through the explicit dependence on the magnetic flux α. If time-reversal
symmetry is fully broken, all permutations in equation (32) that involve the interchange of
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incoming and outgoing channels, corresponding to the 14 lower diagrams in figure 2, vanish,
and only the first two diagrams in figure 2 remain. Partial integration of the intermediate time ξ

allows one to rewrite terms between brackets {· · ·} in equation (33), see appendix C for details.
Finally, one verifies that the result (20) is recovered for α = 0 and α � 1, corresponding to
the presence and absence of time-reversal symmetry, when the parameters xj and α do not
depend on time.

4. Applications

In order to illustrate the use of equations (30)–(33), we return to the example of section 2 and
consider transport through a chaotic quantum dot coupled to two electron reservoirs by means
of ballistic point contacts with N1 and N2 channels, respectively. The scattering matrix of the
quantum dot has dimension N = N1 + N2. The current through the dot is defined as a linear
combination of the currents through the two point contacts,

I(t) = e

N∑
i,j=1

(
a†

i (t)�ijaj (t) − b†
i (t)�ijbj (t)

)
(34)

where the N × N matrix � was defined in equation (7) and the operators ai(t) and bi(t)

are annihilation operators for incoming and outgoing states in channel i = 1, . . . , N in the
leads, respectively, see section 3. The advantage of definition (34) for the current through the
quantum dot, instead of a definition where the current through one of the contacts is used, is
that it simplifies the ensemble average taken below. Both definitions of the current give the
same result for the quantity of interest, the integral of I(t) over a large time interval ti < t < tf .

The electron distribution function for the electrons entering the quantum dot from the leads
is given by the Fourier transform f (t) of the Fermi function in the corresponding electron
reservoir [57–59],

a†
j (t

′)ai(t) = fij (t
′ − t) aj (t

′)a†
i (t) = f̃ ij (t − t ′) (35)

where we defined

fij (t) = δij

∫
dε

2πh̄

eiεt/h̄

e(ε−µi )/kT + 1
= δij

ikT eiµit/h̄

2h̄ sinh(πkT t/h̄)

f̃ ij (t) = δij δ(t) − fij (t).

(36)

Here µi is the chemical potential of reservoir 1 for 1 � i � N1 and the chemical potential of
reservoir 2 for N1 < i � N .

Substitution of equations (35) and (13) into equation (34) allows us to calculate the
time-averaged expectation value of the current through the quantum dot for a time interval
ti < t < tf ,

I = 2e

tf − ti

∫ tf

ti

dt

∫
dt1 dt2 tr[δ(t − t1)�δ(t − t2) − S†(t1, t)�S(t, t2)]f (t1 − t2). (37)

(A factor 2 has been added to account for spin degeneracy. The time interval ti < t < tf during
which charge is measured is taken to be the largest time scale in the problem.)

In the absence of a source–drain voltage, equation (37) describes the current that is
‘pumped’ by the time-dependent potential in the dot,

Ipump = − 2e

tf − ti

∫ tf

ti

dt

∫
dt1 dt2 trS†(t1, t)�S(t, t2)feq(t1 − t2) (38)

where feq is the Fourier transform of the Fermi function. Equation (38) was first derived
in [35]; it reduces to the current formulae of [53, 54] in the adiabatic limit, where the time
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dependence of the potential of the quantum dot is slow compared to the dwell time in the
quantum dot. At small bias voltage, there is a current proportional to the bias, I = GV , where
G is the (time-averaged) conductance of the dot. The conductance G can be calculated from
equation (37) by setting µi = �iieV and then linearizing in V [22],

G = 2e2

h

[
N1N2

N
− 2π i

tf − ti

∫ tf

ti

dt

∫
dt1 dt2(t1 − t2) tr �S(t, t1)�S†(t2, t)feq(t1 − t2)

]
.

(39)

Here feq is the Fermi function in the absence of the external bias. For time-independent
transport, equation (39) is equal to the Landauer formula (6).

Conductance. The ensemble average and the variance of the conductance G for a quantum
dot with a shape depending on a single time-dependent parameter x was calculated by Vavilov
and Aleiner using the Hamiltonian approach [22]. Using the scattering matrix correlator
(28), their result for 〈G〉 is easily reproduced and generalized to arbitrary values of the (time-
independent) magnetic field,

〈G〉 = 2e2N1N2

hN
+ δG (40)

δG = − 2e2N1N2

hN(tf − ti)

∫ tf

ti

dt

∫ ∞

0
dτ

× exp

[
−(N + 4α2)τ − 2

∫ τ

0
dτ1(x(t − τ + τ1) − x(t − τ1))

2

]
. (41)

The correction term δG of equation (41) is the weak localization correction; it results from
the constructive interference of time-reversed trajectories. The presence of a time-dependent
potential breaks time-reversal symmetry and suppresses the weak localization correction.
Vavilov and Aleiner investigated the case x(t) = δx cos(ωt) of a harmonic time dependence
for the parameter x in detail. In that case, the suppression of weak localization increases with
increasing frequencies and saturates at a value

δG = −2e2N1N2

N2h
×




[
1 − 2(δx)2

N+4α2

]
if (δx)2 � N + 4α2√

N+4α2

4(δx)2 if (δx)2 � N + 4α2
(42)

for frequencies h̄ω � N� [22]. (Applicability of random matrix theory requires that
ω � 1/τerg, where τerg is the time for ergodic exploration of the quantum dot.) If the
fluctuations of the parameter x are fast and random on the scale 2πh̄/N� of the delay time in
the dot, they may be considered Gaussian white noise,

〈x(t)x(t ′)〉 = 1
4γ δ(t − t ′). (43)

In that case, the exponent in equation (41) can be averaged separately, and one finds the result

δG = − 2e2N1N2

hN(N + 4α2 + γ )
. (44)

The same suppression of weak localization was obtained previously to describe the decohering
effect of the coupling to an external bath [60–62]. Note that the strong-perturbation asymptote
for white noise is different from the strong-perturbation asymptote for fast harmonic variations
of the dot’s shape. The cause for this difference is the existence of small time windows in
which time-reversal symmetry is not violated near times t with cos(ωt) = ±1 for harmonic
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Figure 3. Diagrams representing the two contributions to the variance of the pumped current.
Following the notation of [36], dotted lines correspond to the scattering matrix S , thick solid lines
correspond to the fixed matrices � and f , and thin solid lines correspond to the Kronecker deltas
in the average over the ensemble of scattering matrices.

variations ∝ cos(ωt), while for a random time dependence of x(t) no such special times
around which time-reversal symmetry is preserved exist [25, 26].

Similarly, the variance of the conductance can also be expressed in terms of the
correlator (28). (As in the time-independent case, the non-Gaussian correlator (32) does
not contribute to the variance of the conductance.) We refer to [23] for the detailed expression
for var G and an analysis of the effect of a harmonic time dependence of the shape function
x(t). Conductance fluctuations for the case when x(t) is a sum of two harmonics with different
frequencies were considered by Kravtsov and Wang [25].

Pumped current. To first order in the pumping frequency ω, the current in the absence of
a source–drain voltage is nonzero only if two or more parameters xj that determine the dot’s
shape are varied independently. Even then, the ensemble average of the pumped current is
zero, and the first nonzero moment is 〈I 2〉. The ensemble average 〈I 2〉 was calculated in [53]
for small pumping amplitudes x1(t) = δx1 sin(ωt), x2 = δx2 sin(ωt + φ),

〈I 2〉1/2 = eωδx1δx2

2πN
sin φ (45)

independent of the presence or absence of a magnetic field. The case of pumping amplitudes
of arbitrary strength was considered in [34].

Beyond the adiabatic regime, one time-dependent parameter is sufficient to generate a
finite current through the dot [52, 63]. The second moment 〈I 2〉 in that most general case was
first calculated in [35], using the random Hamiltonian approach. The second moment, which
involves an average over four scattering matrix elements, can also be obtained in the random
scattering matrix approach, using equations (30)–(33) of the previous section. We then find
that there are two contributions to

〈
I 2

pump

〉
: one contribution with two Gaussian contractions of

scattering matrices (giving a factor W 2
1 ) and one contribution which involves a correlator of

four scattering matrices (giving a factor W2). Diagrams representing these two contributions
are shown in figure 3. Adding both contributions, we find

〈
I 2

pump

〉 = 8e2N1N2

N(tf − ti)2

∫ tf

ti

dt dt ′
∫ ∞

0
dτ dξ dξ ′

∫ τ

−τ

dτ ′feq(2τ ′)feq(−2τ ′)

× D(t, t − τ − τ ′; t ′, t ′ − τ − τ ′)D(t ′, t ′ − τ + τ ′; t, t − τ + τ ′)
× D(t − τ − τ ′, t − τ − τ ′ − ξ; t − τ + τ ′, t − τ + τ ′ − ξ)

× D(t ′ − τ + τ ′, t ′ − τ + τ ′ − ξ ′; t ′ − τ − τ ′, t ′ − τ − τ ′ − ξ ′)
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×
[
(δ(ξ) − N)(δ(ξ ′) − N) + 4

∑
m

(xm(t ′ − τ + τ ′) − xm(t ′ − τ − τ ′))

× (xm(t − τ + τ ′) − xm(t − τ − τ ′))

]
(46)

independent of the value of the magnetic field. Using equation (C.4) of appendix C to express
the delta functions in terms of the functions xm(t) and a total derivative of D, performing
partial integrations and shifting t → t − τ, t ′ → t ′ − τ , this can be rewritten as〈
I 2

pump

〉 = 32e2N1N2

N(tf − ti)2

∫ ∞

0
dτ dξ dξ ′

∫ τ

−τ

dτ ′
∫ tf−τ

ti−τ

dt dt ′feq(2τ ′)feq(−2τ ′)

× D(t + τ, t − τ ′; t ′ + τ, t ′ − τ ′)D(t − τ ′, t − τ ′ − ξ; t + τ ′, t + τ ′ − ξ)

× D(t ′ + τ, t ′ + τ ′; t + τ, t + τ ′)D(t ′ + τ ′, t ′ + τ ′ − ξ ′; t ′ − τ ′, t ′ − τ ′ − ξ ′)

×

∑

m,n

(∑
±

±xm(t ± τ ′ − ξ)

)2 (∑
±

±xn(t ± τ ′ − ξ ′)

)2

+
∑
m

(∑
±

±xm(t ′ − τ ± τ ′)

)(∑
±

±xm(t − τ ± τ ′)

)]
. (47)

This expression agrees with the result found by Vavilov et al [35]. We refer to [35] for
a detailed analysis of equation (47) for the limiting cases of adiabatic pumping and high-
frequency pumping with one and two time-dependent parameters.

Noise. The current noise is defined as the variance of the charge transmitted through the
quantum dot in the time interval ti < t < tf ,

S = 1

tf − ti

∫
dt dt ′(I(t)I(t ′) − I(t)I(t ′)). (48)

As in equation (35), · · · denotes a quantum-mechanical or thermal average, not an ensemble
average. Performing the quantum-mechanical and thermal average over the incoming states
[57–59], the noise power S can be calculated as

S = 2e2

tf − ti

∫ tf

ti

dt dt ′
∫

dt1 dt2 dt ′1 dt ′2 tr[(S†(t1, t)�S(t, t2) − δ(t1 − t)�δ(t − t2))

× f̃ (t ′1 − t2)(S†(t ′1, t
′)�S(t ′, t ′2) − δ(t ′1 − t ′)�δ(t ′ − t ′2))f (t1 − t ′2)].

(A factor 2 has been added to account for spin degeneracy.) In the absence of a time-dependent
potential, equation (49) represents the sum of Nyquist noise and shot noise [64]. With time
dependence, it contains an extra contribution to the noise that is caused by the time dependence
of the potential in the quantum dot [37, 65–69].

Averaging equation (49) for an ensemble of chaotic quantum dots, we find

〈S〉 = SN + SS + SP

SN = 2kT h〈G〉

SS = eV h〈G〉 N1N2

2πN2

(
coth

eV

2kT
− 2kT

eV

)

SP = e2N1N2(kT /h̄)2

2N(tf − ti)

∫ tf

ti

dt dt ′
(

1

N2
−

[∫ ∞

0
D(t, t − ξ; t ′, t ′ − ξ) dξ

]2
)

× N2 − 2
(
N2

1 + N2
2

)
sin2[eV (t − t ′)/2h̄]

sinh2[πkT (t − t ′)/h̄]

(49)
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where 〈G〉 is the average (time-dependent) conductance, see equation (40), and V = (µ1 −
µ2)/e the bias voltage. The above ensemble averages for the Nyquist noise and shot noise are
the same as the noise power found in the absence of a time-dependent potential [70], up to
an eventual weak localization correction. The extra noise generated by the time dependence
of the dot shape is fully described by the term SP . In the adiabatic regime h̄ω � N�, the
pumping noise can be written as

SP = e2N1N2(kT /h̄)2

2N(tf − ti)

∫ tf

ti

dt ′ dt

[
1

N2
−

(
1

N + 2
∑

m(xm(t) − xm(t ′))2

)2
]

× N2 − 2
(
N2

1 + N2
2

)
sin2[eV (t − t ′)/2h̄]

sinh2[πkT (t − t ′)/h̄]
. (50)

In the absence of a bias voltage, eV = 0, equation (50) has been analysed in detail by Vavilov
et al in [37]. For one time-dependent parameter x(t) = δx cos(ωt), it is found that

SP = ωe2N1N2

π2N2

{
2π(δx)2

(
coth h̄ω

2kT
− 2kT

h̄ω

)
if (δx)2 � N max(1, k2T 2/h̄2ω2)

3|δx|N1/2 if (δx)2 � N max(1, k2T 2/h̄2ω2).

(51)

An applied bias voltage has an effect on the pumping noise SP only if eV � max(h̄ω, kT ,

h̄ω|δx|/N1/2). And even then, the effect of the applied bias is limited to a reduction of
SP by a numerical factor 2N1N2/N

2. In this respect, the effect of an external bias on the
pumping noise is much weaker than that of temperature, which tends to suppress SP as soon
as kT � h̄ω max(1, |δx|/N1/2) [37].

5. Conclusion

In summary, in this paper we have extended the scattering approach of the random matrix
theory of quantum transport to the case of scattering from a chaotic quantum dot with a time-
dependent potential. We addressed the limit that the number of channels N coupling the dot
to the electron reservoirs is large. In this limit, the elements of the scattering matrix have a
distribution that is almost Gaussian, with non-Gaussian corrections that are small as N becomes
large. We calculated the second moment, which defines the Gaussian part of the distribution,
and the fourth cumulant, which characterizes the leading non-Gaussian corrections.

The advantage of the scattering matrix approach is that, once the scattering matrix
distribution is calculated, the computation of transport properties is a matter of mere quadrature.
As an example, we calculated the conductance of a quantum dot with a time-dependent
potential or the current pumped through the dot in the absence of an external bias, and found
agreement with previous calculations of Vavilov et al that were based on the Hamiltonian
approach [22, 23, 35]. The results derived here were used for the calculation of the current
noise generated by the time dependence of the potential in the quantum dot by Vavilov and
the authors [37]. The current noise in the presence of both a time-dependent potential in the
dot and a bias voltage was studied here.

Whereas the first four moments of the scattering matrix distribution that we calculated here
are sufficient for the calculation of most transport properties—most transport properties are
quadratic or quartic in the scattering matrix—we need to point out that there are observables
that cannot be calculated with the results presented here. First, in the presence of one or
more superconducting contacts, (averaged) transport properties may still depend on higher
cumulants of the distribution, despite the fact that these are small by additional factors of 1/N

[11]. Second, the results presented here fail to quantitatively describe transport properties for
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very small N, which can have strongly non-Gaussian distributions. Further research in these
directions is necessary.
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Appendix A. Nonideal contacts

Nonideal contacts are characterized by channels that have a transmission coefficient �j smaller
than unity, j = 1, . . . , N . The imperfect transmission of the contacts is characterized by an
N × N reflection matrix rc(t, t

′), for which we take the simple form

rc(t, t
′) = (1 − �)1/2δ(t − t ′) (A.1)

where � is an N × N diagonal matrix containing the transmission coefficients �j on the
diagonal. The direct backscattering from the contacts is fast compared to the scattering that
involves ergodic exploration of the dot, hence the delta function δ(t − t ′) in equation (A.1).
In order to describe time-dependent scattering with nonideal leads, we use a modification of
the stub model of equation (22) [20, 71],

S = rc + �1/2Sfl�1/2 Sfl = PU(1 − RU)−1P † (A.2)

R = Q† e−2π iH/M�Q − P †rcP . (A.3)

The first term in equation (A.2) takes into account the direct backscattering at the contact for
electrons coming in from the reservoirs, whereas the extra term in equation (A.3) describes
backscattering at the contact for electrons coming from the dot. The additional factors �1/2

in the second term of equation (A.2) account for the decreased transmission probability for
entering or exiting the quantum dot. With the inclusion of reflection in the contacts as in
equation (A.2), the scattering matrix approach for time-independent scattering was proved to
be fully equivalent to the Hamiltonian approach with arbitrary coupling to the leads [20]. The
corresponding distribution of the scattering matrix S for time-independent scattering is known
as the Poisson kernel [19].

As in the case of ideal leads, the distribution of the elements of the scattering matrix S
for a quantum dot with nonideal leads is almost Gaussian, with non-Gaussian corrections that
are small if N � 1. The main difference with the case of an ideal contact is that, as a result
of the direct reflection from the contact, the average of S is nonzero for a nonideal contact.
The fluctuations of S around the average are described by Sfl, cf equation (A.2). In order to
find the distribution of Sfl, we note that expression (A.2) for Sfl is formally equivalent to the
stub model equation (22) used to describe time-dependent scattering from a quantum dot with
ideal contacts. Hence we conclude that the moments of Sfl can be obtained directly from the
results for the case of ideal contacts, see section 3 and appendix C, provided we substitute
equation (A.3) for the matrix R. This amounts to the replacement S → Sfl in the final results
(30)–(33), N → ∑

j �j in equation (31), and N → ∑
j �2

j in equation (33).

Appendix B. Correlators for time-independent scattering

The scattering matrix correlators for time-independent scattering serve as input for the
calculation of the correlators for time-dependent scattering. They can be calculated using the
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Hamiltonian approach (see [12, 44, 45]), or, alternatively, in the scattering matrix approach,
using a time-independent version of the ‘stub model’ of section 3. Following the latter method,
the scattering matrix S is written as [46]

S(ε) = PU(1 − RU)−1P † R = Q† e2π iε/M�Q. (B.1)

Here the matrices P and Q are as in equation (22), whereasU is an M ×M unitary matrix taken
from the circular orthogonal ensemble or circular unitary ensemble of random matrix theory,
depending on the presence or absence of time-reversal symmetry. The picture underlying
equation (B.1) is that a stub with M −N scattering channels is attached to the chaotic quantum
dot as in figure 1, such that the dwell time in the stub is much larger than the dwell time in
the dot, but much smaller than the total dwell time in the combined dot–stub system. The
first condition implies that the M × M scattering matrix of the chaotic dot (without stub) may
be taken energy independent, and distributed according to the appropriate circular ensemble
from random matrix theory. The total scattering matrix S then acquires its energy dependence
through the energy dependence of the (M −N)×(M −N) reflection matrix R of the stub. The
second condition, which requires M � N , ensures that the dot plus stub system is explored
ergodically before an electron escapes into the lead, so that the spatial separation of the energy
dependence (stub) and chaotic scattering (dot) does not affect the correlators of the scattering
matrix S.5

Using the diagrammatic technique of [36] to average over the random unitary matrix U ,
we find that the second moment W1 is given by

W
ij;kl
1 (ε; ε′) = 1

M − tr R(ε)R†(ε′)
×

{
(δikδjl + δilδjk) with TRS
δikδjl without TRS.

(B.2)

Substitution of equation (B.1) for R gives equation (10) of section 3. Note that equation (10)
is valid in the semiclassical limit of large N only. Within the diagrammatic technique it
follows from the observation that for large N the only contributions to W1 are the ‘ladder’
and ‘maximally crossed’ diagrams, whereas for small N more contributions exist and a non-
perturbative calculation is needed to calculate the scattering matrix correlator [36]. The
correlator W1(ε, ε

′) was calculated by Verbaarschot et al in [12] for arbitrary N using the
Hamiltonian approach and the supersymmetry technique.

For the cumulant W2 we find in the absence of time-reversal symmetry

W
i1j1,i2j2;k1l1,k2l2
2 (ε1, ε2; ε′

1, ε
′
2) = −(

δi1k1δj1l2δi2k2δj2l1 + δi1k1δj1l2δi2k2δj2l1

)
× [M − tr R(ε1)R(ε2)R

†(ε′
1)R

†(ε′
2)]

× [M − tr R(ε1)R(ε′
1)]

−1[M − tr R(ε2)R(ε′
1)]

−1

× [M − tr R(ε1)R(ε′
2)]

−1[M − tr R(ε2)R(ε′
2)]

−1. (B.3)

In the presence of time-reversal symmetry, 14 terms corresponding to the permutations
i2 ↔ j2, k1 ↔ l1 and k2 ↔ l2 have to be added. Equation (11) is recovered upon substitution
of equation (B.1) for R.

Appendix C. Correlators for time-dependent scattering

In this appendix we present the derivations of equations (30)–(33).
5 Note that this version of the ‘stub model’ is different from that used in the main text. In time representation, the
matrix U of equation (B.1) is proportional to a delta function δ(t − t ′), whereas the matrix R involves a time delay
with time t − t ′ = 2πh̄/M�. For the model of section 3, the time delay is described by U , whereas scattering from
the stub is instantaneous. Both versions of the ‘stub model’ are equivalent to the Hamiltonian approach. Which one
to use is a matter of convenience.
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Figure 4. (a) Notation, following [36]. (b) Calculation of the kernel D(t, t ′; s, s ′).
(c) Diagrammatic representation of the Dyson equation (C.2) for D(t, t − τ ; s, s − τ ), with
t ′ = t − τ, t1 = t − τ1, s

′ = s − τ and s1 = s − τ1. (d ) Diagrammatic representation of the
differential equation (C.4) for D(t, t − τ ; s, s − τ ). Left-hand side: (M + ∂τ )D(t, t − τ ; s, s − τ );
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Figure 5. Diagram representing the kernel C(t, t ′; s, s ′) of equation (C.7).

We first calculate the second moment W1 of the scattering matrix distribution,
equations (30) and (31). To find W1 we use equation (22) to expand S in powers of U
and R and then average over U . In the limit of large M and large N, that average can be done
using the cumulants (18) and (20) and the diagrammatic rules of [36]. This calculation is
similar to the standard diagrammatic perturbation theory: the matrices U,U† and R(t) play
the role of the unperturbed retarded and advanced Green functions and the random potential,
respectively.

Performing the average over U this way, we find that, to leading order in M−1 and N−1,
the cumulant W1 is dominated by two leading contributions: the ‘ladder diagram’ of figure 4
and the ‘maximally crossed diagram’ of figure 5. Since every factor in these two diagrams
involves equal time differences for S and S∗, we conclude that this contribution to W1 is
nonzero only if t − t ′ = s − s′, cf equation (18). Further, we conclude that the ladder diagram
gives a nonzero contribution only if i = k and j = l, while the maximally crossed diagram
contributes when i = l and j = k.

We first consider the contribution of the ladder diagram, which we write as

δikδjlδ(t − t ′ − s + s ′)D(t, t ′; s, s′) (C.1)
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which is in the centre of the diagram; the shaded blocks represent factors of the form (M + ∂τ )D,
see equation (C.8) and figure 4(d ).

where the kernel D is the equivalent of the ‘diffuson’ from standard diagrammatic perturbation
theory. Note that, in view of the delta function in equation (C.1), the kernel D depends on
three arguments, not four. For notational convenience, we prefer, however, to continue to use
the two initial times t ′ and s′ and the two final times t and s to denote the time arguments of D.

Considering the ladder diagrams to all orders, the diffuson D is found to obey the Dyson
equation

D(t, t − τ ; s, s − τ ) = θ(τ ) e−Mτ + θ(τ )

∫ τ

0
dτ1 D(t, t − τ1; s, s − τ1)

× tr R(t − τ1)R
†(s − τ1) e−M(τ−τ1). (C.2)

The solution of equation (C.2) is

D(t ′ + τ, t ′; s′ + τ, s′) = θ(τ ) exp

[
−

∫ τ

0
dτ1(M − tr R(t ′ + τ1)R

†(s′ + τ1))

]
(C.3)

where we used that D = 0 if τ < 0. Substitution of R = exp(2π iH/�) reproduces the first
term in the result (30). For future use, we note that the function D of equation (C.3) obeys the
differential equations

∂

∂τ
D(t, t − τ ; s, s − τ ) = δ(τ ) − [M − tr R(t − τ )R†(s − τ )]D(t, t − τ ; s, s − τ ) (C.4)

∂

∂τ
D(t ′ + τ, t ′; s′ + τ, s′) = δ(τ ) − [M − tr R(t ′ + τ )R†(s′ + τ )]D(t ′ + τ, t ′; s′ + τ, s ′).

(C.5)

Calculation of the contribution of the maximally crossed diagram proceeds in an analogous
way. This contribution reads

δ(t − t ′ − s + s ′)δilδjkC(t, t ′; s, s′), (C.6)

where the analogue of the Cooperon is given by

C(t ′ + τ, t ′; s′ + τ, s′) = θ(τ ) exp

[
−

∫ τ

0
dτ1(M − tr R(t ′ + τ1)R

†(s′ + τ − τ1))

]
. (C.7)

Substitution of R = exp(2π iH/�) gives the second term of equation (30).
We now turn to the four-scattering-matrix correlator (29), which is the equivalent of the

Hikami box in standard diagrammatic perturbation theory. We first calculate the first term of
equation (32). It is represented diagrammatically in figure 6. There are two contributions: one
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contribution involving Gaussian contractions with the cumulant (18) only, which is depicted as
the first term on the rhs of figure 6, and the other contribution that involves the non-Gaussian
contraction of equation (20) once and otherwise Gaussian contractions, see the second term
on the rhs of figure 6. Adding these two contributions, the function F is found to be

F(t1, t
′
1; t2, t

′
2; s1, s

′
1; s2, s

′
2) =

∫
dτD(t ′1 + τ, t ′1; s′

1 + τ, s′
1)

× D(t2 − s1 + s′
1 + τ, t ′2; s2 − t1 + t ′1 + τ, s ′

2)

× D(t1, t
′
1 + τ ; s2, s2 − t1 + t ′1 + τ )D(t2, t2 − s1 + s′

1 + τ ; s1, s
′
1 + τ )

× tr R(t ′1 + τ )R†(s2 − t1 + t ′1 + τ )R(t2 − s1 + s′
1 + τ )R†(s′

1 + τ )

−
∫

dτ1 dτ2 dτ3 dτ4
(
M + ∂τ1

)
D(t ′1 + τ1, t

′
1; s′

1 + τ1, s
′
1)

× (
M + ∂τ3

)
D(t ′2 + τ3, t

′
2; s′

2 + τ3, s
′
2)

(
M + ∂τ2

)
D(t1, t1 − τ2; s2, s2 − τ2)

× (
M + ∂τ4

)
D(t2, t2 − τ4; s1, s1 − τ4)θ(t1 − t ′1 − τ1 − τ2)

× θ(t2 − t ′2 − τ3 − τ4)θ(s1 − s ′
1 − τ1 − τ4)θ(s2 − s ′

2 − τ2 − τ3)

×F 0(t1 − t ′1 − τ1 − τ2; t2 − t ′2 − τ3 − τ4; s1 − s ′
1

− τ1 − τ4; s2 − s ′
2 − τ2 − τ3). (C.8)

Here we used equation (C.5) to express the four legs of the diagrams of figure 6(b) in terms
of the diffuson D and its derivative. The second term in equation (C.8) can be simplified
noting that the time integration is dominated by all four arguments of F 0 being of order
1/M . Using the smallness of these time arguments, the diffusons can be expanded around
t1 − t ′1 − τ1 − τ2 = t2 − t ′2 − τ3 − τ4 = s1 − s′

1 − τ1 − τ4 = s2 − s′
2 − τ2 − τ3 = 0 and three of

the four time integrations can be done. The result is

F(t1, t
′
1; t2, t

′
2; s1, s

′
1; s2, s

′
2) =

∫
dτ �(t1, t

′
1; t2, t

′
2; s1, s

′
1; s2, s

′
2; τ )D(t ′1 + τ, t ′1; s′

1 + τ, s′
1)

×D(t1, t
′
1 + τ ; s2, s2 − t1 + t ′1 + τ )D(t2, t2 − s1 + s′

1 + τ ; s1, s
′
1 + τ )

×D(t2 − s1 + s′
1 + τ, t ′2; s2 − t1 + t ′1 + τ, s ′

2) (C.9)

where we abbreviated

� = M − tr R(t ′1 + τ )R†(s2 − t1 + t ′1 + τ ) − tr R(t2 − s1 + s′
1 + τ )R†(s′

1 + τ )

+ tr R(t ′1 + τ )R†(s2 − t1 + t ′1 + τ )R(t2 − s1 + s′
1 + τ )R†(s′

1 + τ )

− δ(t1 − t ′1 − τ ) − δ(s1 − s ′
1 − τ ). (C.10)

We used equations (C.5) and (C.4) to calculate time derivatives of the diffusons. Alternatively,
using a partial integration, the function F can be expressed by equation (C.9) with

� = M − tr R(t ′1 + τ )R†(s′
1 + τ ) − tr R(t2 − s1 + s′

1 + τ )R†(s2 − t1 + t ′1 + τ )

+ tr R(t ′1 + τ )R†(s2 − t1 + t ′1 + τ )R(t2 − s1 + s′
1 + τ )R†(s′

1 + τ )

− δ(τ ) − δ(τ − t1 + t ′1 + s2 − s ′
2). (C.11)

or with � given by a convenient linear combination of equations (C.10) and (C.11) with
coefficients C1, C2 satisfying the condition C1 + C2 = 1.

Finally, using equation (22) for R, the first term of equation (32) is obtained. The other
contributions to equation (32) can be found after permutation of the channel indices and time
variables as indicated in figure 2.
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[25] Wang X B and Kravtsov V E 2001 Phys. Rev. B 64 033313
[26] Kravtsov V E 2002 Pramana J. Phys. 58 183
[27] Yudson V I, Kanzieper E and Kravtsov V E 2001 Phys. Rev. B 64 045310
[28] Dyson F J and Mehta M L 1963 J. Math. Phys. 4 701
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[69] Moskalets M and Büttiker M 2002 Phys. Rev. B 66 035306
[70] Nazarov Yu V 1995 Quantum Dynamics of Submicron Structures (NATO ASI Series vol 291) ed H A Cerdeira,

B Kramer and G Schön (Dordrecht: Kluwer) p 687
[71] Friedman W A and Mello P A 1985 Ann. Phys. 161 276


